
Hackathon 
Preparation 
Workshop

Brought to you by CompSoc and ShefESH



Session Overview
• Git and GitHub
• Python
• SQLite
• Database Security
• Flask



Git and GitHub



What is Git?
• Git is a popular version control system used for tracking 

code changes, who made them and code collaboration
• Things you can do with git:

• Create a repository by initialising git on a folder 
• Commit modifications to files by pushing updates
• Pull the latest version of files to a local copy
• Revert to previous commits 
• Branch and merge to allow for work on different 

sections/versions



Installing Git
There are a few different ways of accomplishing this:
• By installing GitHub Desktop
• By installing from the Internet (for Windows/Mac)
• By installing through VS Code GitHub Pull Requests and 

Issues extension
• Mac specific: Using Homebrew
• Debian/Ubuntu specific: running ‘sudo apt-get install git-all’



Configuring Git
This is an important step to be able to commit file updates as it 
lets Git know who you are, and is done by running the following 
in Git Bash (for windows) or terminal (for Mac/Linux):

• git config –global user.name “your username”
• git config -global user.email “your email”

The email should be the same as the email you use/will use for 
GitHub



Creating a repository
To begin with, create an empty folder and then navigate to it 
within Bash/Terminal using the ‘cd’ command from COM1001 
e.g. cd Documents/folder name

Once you are within the folder, you need to run the command 
‘git init’ to initialise Git on that folder

If this is successful, you should get a message returned to you 
saying ‘Initialized empty Git repository in (place your folder is)’



Adding a file
Within your folder, create and save a new text document using a 
text editor such as Microsoft Word or Notepad with some 
information e.g. “Hello World”

Return back to Bash/Terminal and type ‘git status’

This should tell us that there are untracked files - the text file we 
just added.



Staging a file
Now, we can use the command ‘git add (text file)’ to stage the 
file, which means that the file is ready to be committed.

If we had multiple files to stage, we can use the command ‘git 
add --all’ or ‘git add -A’

To check this has been done correctly, we can use the ‘git status’ 
command again



Committing a file
When we commit files, it is important to always include a clear 
message to help identify to yourself and others what has 
changed and when.

This is done using the command: ‘git commit -m “Useful 
message here”’



Pushing to GitHub
To be able to push to GitHub we first need to create a GitHub 
repository:



Pushing to GitHub

You will need to copy the URL and use it in the following 
command: ‘git remote add origin (paste URL)’



Pushing to GitHub
Now that you have set up a connection between your local Git 
repository and your online GitHub repository, you can now run 
the following command: ‘git push --set-upstream origin master’

Since this is the first time you are pushing to GitHub, you need 
to use ‘--set-upstream’ to identify the default branch you want 
to push to

If you refresh your GitHub page, you should see that your 
repository has updated



Pulling from GitHub
This is used to update your local version of a repository by using 
the command ‘git pull origin’

By using pull, we are using both fetch and merge commands 
behind the scenes, where fetch gets all of the change history 
and merge combines the current branch with a specified 
branch.



What if you want to work on 
an existing repository?
This can be done by cloning an existing repository so that you 
can work on it locally, using the command: ‘git clone (URL)’ 
where you can copy the URL from:

Updates can be 
committed using:
● git add (file name)
● git commit -m “”
● git push



Branches
These are extremely useful to work on new features of a project 
in a contained area of the repository, ensuring that any 
breakages to code only affect the project branch and not the 
project itself.

Another benefit of branches is that multiple developers can 
work on separate tasks at the same time without causing 
multiple project conflicts.



Pushing a branch to GitHub
In order to create a new branch, we use the following command: 
‘git checkout -b (new branch name)’

Afterwards, make a couple of changes to the text file e.g. 
adding another word (don’t forget to save!)

Now, check the status of the current branch using ‘git status’ - it 
is important to note that this will tell you that you are on your 
new branch



Pushing a branch to GitHub
Like before, we can now use ‘git add (file name)’ and ‘git commit 
-m “(useful message)”’

Now, to push the newly created branch, we use the command 
‘git push origin (new branch name)’



Pushing a branch to GitHub



And in order access remote branches locally we use ‘git 
checkout (branch name)’

We can find out what branches are available locally and 
remotely by using ‘git branch -a’

Pulling a branch from GitHub
When a branch has been added to a GitHub repository, it will 
show up when you run ‘git pull’ e.g.



Python



Python
- A language used by almost everyone
- We're assuming that you already have it installed as well as a code 

editor like VSCode
- Time for a refresher on the basics



Python venv
Sometimes python will throw a fit when you try and pip install. It’ll say 
something about “externally managed environments”.

To fix this, we use virtual environments!

https://docs.python.org/3/library/venv.html

Linux: python -m venv /path/to/new/virtual/environment
Windows: python -m venv C:\path\to\new\virtual\environment

source /path/to/new/virtual/environment/bin/activate 

To activate it

https://docs.python.org/3/library/venv.html


Numpy
https://www.w3schools.com/python/numpy/default.asp
A Common python library
It adds support for faster multidimensional arrays and mathematical 
functions
We're going to use it here just for its n-dimensional arrays, as they are 
faster than Python lists and as such are used for tools like Matplotlib

It can also be used for things like logarithms, rounding numbers, 
trigonometric functions and more!

https://www.w3schools.com/python/numpy/default.asp


Matplotlib
https://www.w3schools.com/python/matplotlib_intro.asp
A graph plotting library

https://www.w3schools.com/python/matplotlib_intro.asp


File handling 
https://www.w3schools.com/python/python_file_handling.asp

https://www.w3schools.com/python/python_file_handling.asp


A simple program (Exercise)
With everything we've just learned, here's a challenge:

Download the file rockyou.txt
Then create a program that reads in all its data (its ok to only use part of it) that plots a 
histogram (frequency graph) of all characters used, ordered by ASCII codes

Useful:
ord(char) returns the ASCII code of that character
When plotting, define the boundaries of the histogram using 
np.arrange(start_value, end_value, step)

Bonus — if you're doing this in the Git repo you created earlier, commit these additions 
once you're done



SQLite



What is SQLite
SQLite is a software library that provides a relational database 
management system and is typically:

• Self-contained
• This makes SQLite suitable in any environment as it requires minimal support 

from the OS or external libraries
• Serverless

• In MySQL or PostgreSQL, a separate server is required for these to run

• Requires zero configuration
• Transactional

• All actions will either take place completely, or not at all - even if the system 
crashes



Features unique to SQLite
• SQLite uses dynamic types for tables, so any value can be 

stored in any column even if it is different from the declared 
data type

• SQLite allows you to join tables in different databases
• Can create in-memory databases, which are extremely 

useful for prototyping or testing



When is best?
It is best to use SQLite when you need simplicity, speed and minimal 
resources, for example:

• Embedded apps
• Very useful for apps that need to store data locally

• Local storage
• When you need to store settings/preferences/cached data locally

• Cross-platform apps
• Prototyping and development

• SQLite doesn’t need to be set up so useful in quick situations

• Internet of Things devices
• Such as security devices, smart watches and point of sale services like PayPal



SQL Basics
The most important query in SQL is SELECT, as this is used to get and 
return data from a database.

You would use this command like this:
• SELECT column1, column2… FROM Table_Name;
• SELECT * FROM Table_Name;

You can filter records via a specified condition by using the WHERE query:
• SELECT * FROM Table_Name WHERE condition;
• SELECT * FROM Order_Table WHERE orderID = ‘1’;



SQL Basics
In order to modify existing records in a given table, you can use the query 
UPDATE like this:

• UPDATE Table_Name SET column1 = newValue1, column2 = 
newValue2… WHERE condition;

• UPDATE Order_Table SET orderName = ‘Person’ WHERE orderID = ‘1’;

Additionally, if we wanted to insert a new record into a table it can be done 
like this:

• INSERT INTO Table_Name (column1, column2…) VALUES (value1, 
value2…);

One thing to note: if you are adding values for every column in a table, you 
do not need to include (column1, column2…)



SQL Basics
If you wanted to delete a record from a table, you can use the query:

• DELETE FROM Table_Name WHERE condition;

It is extremely important that you include the WHERE query otherwise all 
records in the specified table will be deleted.

Before any of these queries can be acted upon, you will need to create a 
database using the following query:

• CREATE DATABASE Database_Name;



SQL Basics
Afterwards, you can create a new table using this query:

• CREATE TABLE Table_Name (column1 datatype, column2 datatype…);
• CREATE TABLE Order_Table (orderID int, orderName varchar(30));

What is varchar()? → This is how you define a string using SQL where the 
number inside the brackets is the maximum character length.



SQL Basics
Once you have created a table, you can alter it in 3 different ways:

• Adding a column
• ALTER TABLE Table_Name ADD columnName datatype;

• Modifying a column
• ALTER TABLE Table_Name MODIFY COLUMN columnName datatype;

• Dropping a column
• ALTER TABLE Table_Name DROP COLUMN columnName;



SQL Basics
To Delete a Table you would simply just use this:
- DROP TABLE name_of_table 

To delete a database you would use this:
- DROP DATABASE databaseName;

These are quite dangerous commands so must be used with caution



SQL Basics
Within SQL there are 2 types of keys:

• Primary
• This is used to uniquely identify each record in a table and cannot be null

• Foreign
• Used to identify when a column of one table refers to the primary key of another

Both of these are important to ensure data integrity - primary keys to 
identify records and foreign keys to ensure only valid primary key data is 
used



SQL Basics
In order to identify these keys, we can use the following query:
CREATE TABLE Table_Name (

column1 datatype, 
column2 datatype…, 
PRIMARY KEY(columnName), 
CONSTRAINT constraintName FOREIGN KEY (columnName) 
REFERENCES Table_Name(primary_key_name)

);



SQL Basics
An example of this:
CREATE TABLE Order_Table (

orderID int, 
orderName varchar(30), 
PRIMARY KEY(orderID), 
CONSTRAINT FK_Items FOREIGN KEY (itemID) REFERENCES 
Item_Table(itemID)

);



SQL Basics
Furthermore, you can use the ALTER TABLE query to add or remove keys:

• ALTER TABLE Table_Name ADD CONSTRAINT constraintName 
• PRIMARY KEY (columnName);

• FOREIGN KEY (keyName) REFERENCES Table_Name(PK_Name);

• ALTER TABLE Table_Name DROP
• PRIMARY KEY;

• FOREIGN KEY (contraintName);



Database Security



Database Security
What are the main security issues with the database during the 
hackathon?

• Dodgy inputs
• Teammates
• Anything else?



Database Security
Sanitation:

• Unlikely to have malicious input
• Much more likely to be poorly formed

Solutions:
• ORM - will help make sure datatypes are correct
• SQLite - datatypes are more like “suggestions”

• Can store Strings in Int columns



Database Security
Rogue teammates

• Unlikely to be malicious
• Delete tables, add bad data, break links between tables

Solutions
• SQLite - literally just a file, can keep a backup elsewhere
• Keep your SQL to create your table on hand!!! Don’t just use a CLI and 

hope nothing breaks



Flask



Flask
What is Flask?

- A web framework for Python
- Simple and lightweight

- Allows you a lot of control over exactly how it will function
- Packaged with a webserver so can be ran on your device 

(Only for use in testing)



Flask
The basics
Setup
Define routes
Return HTML
GET / POST requests
HTML templates with custom data

Blueprints



Flask - Setup
Basics folder setup



Flask - Setup
Basics of a flask webapp:



Flask - Routes
Routes
Basic part of any webapp
Links to different parts of the site



Flask - HTML
You can also return html pages so that your website looks nicer!
Requires that ‘render_template’ be imported from Flask

All HTML files must be placed 
within a folder title ‘Templates’



Flask - HTML cont
We can now render HTML pages
But how do we send data from the server to the pages?



Flask - HTML cont
We can now render HTML pages
But how do we send data from the server to the pages?



Flask - HTML cont
We can now render HTML pages
But how do we send data from the server to the pages?



Flask - HTML cont
We can now render HTML pages
But how do we send data from the server to the pages?



Flask - POST/GET
So far all we’ve done is get content - we need a way for users to send 
content to the server. First we need to make a form in our html



Flask - POST/GET
Then we need to specify the request methods our different routes can use.
View - GET
Send - POST



Flask - POST/GET
Now we need to handle these on the server
We need to import ‘request’ from flask



Flask - POST/GET



Flask - POST/GET



Flask - POST/GET



Flask - Exercise
Try making a simple website that 

• Takes the users name and age 
• Returns a greeting 
• Calculates how many days it will be until their next birthday and how 

old they will be turning

You will need to install and import ‘datetime’ module



Flask - Blueprints
We can create blueprints to separate routes into better defined categories 
and keep our files much more organised



Flask - Blueprints



Flask - Blueprints



Flask - Blueprints



Flask - Wrapup
Those are the basics of Flask
In bigger pr

Flask has other cool features built in that you can read more about on their 
website: https://flask.palletsprojects.com/

Anything is possible in Flask!

https://flask.palletsprojects.com/


Thank you for attending!
We look forward to seeing you at the Hackathon!


